Do you know why the estimation of the age of the universe is so difficult?
The estimation of the age of planets bases the radioactive isotopes.
The method that researchers are using in that process is the half-time of the longest living radioactive isotopes. The Bismuth-209(1) is the longest living known isotope. The problem is that the radioactive isotopes, what are used should exist from the beginning of the time, and that's why this kind of method is useless if we want to estimate the age of the universe.
If the radioactive isotope forming in the fusion reaction in the star, the method is useless. The radioactive method is useful if we must estimate the age of the planets, but that thing requires that there are radioactive isotopes on the planets, and there is a possibility that those isotopes are just ended from the eldest planets. So those planets are geological dead.
There is a possibility that the tidal forces that are caused because of other particles like moons around those extremely old planets would cause that there is liquid magma inside them. But those planets would be far different, what we are used to, and it is possible that somewhere in the universe is this kind of planet.
How to calculate the age of the universe?
When the universe is expanding the density of the radiation and material is turning lower(2). That means that when we are thinking the universe as the ball, what is expanding. The size of the ball, what we are calling is expanding the distance between those particles is expanding. And the density of the radiation and material is decreasing.
So that thing can be useful in the calculations about the age of the universe if we would know the power of the Big Bang. The thing is that the estimation of the age of the universe requires very sharp measurements(3) and complicated calculations make the real-life work for estimating the age of the universe quite a complicated thing.
The easiest way to calculate the age of the universe is to measure the distance between Earth and the point of Big Bang. The problem of that thing is how to make that measurement. The scientists should only follow the tracks of photons, and then find the point, where the photons are starting to travel away from Earth in the same line.
And the thing is that making this kind of observation is difficult. The thing that would make this method easy would be that the galaxies would be in the same direction on the ball-layer, and then the astronomers must just draw the lines to the center of the universe. But theory is far away from the practice.
(1) https://en.wikipedia.org/wiki/Bismuth-209
(2) https://en.wikipedia.org/wiki/Age_of_the_universe
(3)https://www.space.com/24054-how-old-is-the-universe.html
Image: https://en.wikipedia.org/wiki/Age_of_the_universe#/media/File:WMAP_2010.png
Comments
Post a Comment