Skip to main content

Nano-acoustic systems make new types of acoustic observation systems possible.



Acoustic diamonds are a new tool in acoustics. 






Another way to make very accurate soundwaves is to take a frame of 2D materials like graphene square there is a hole. And then electrons or laser beams can make that structure resonate. Another way is to use the electromagnetic field that resonates with the frame and turns electromagnetic energy into an oscillation in the frame. 


Nano-acoustic systems can be the next tool for researching the human body. The new sound-wave-based systems make it possible to see individual cells. Those soundwave-based systems or nano-sonars are tools that can have bigger accuracy. Than ever before. The nano-sonar can use nanodiamonds or nanotubes as so-called nano-LRAD systems that send coherent sound waves to the target. In nanotube-based systems, the nanotube can be in the nanodiamond. 

The term acoustic diamond means a diamond whose system oscillates. The system can create oscillation sending acoustic or electromagnetic waves to the diamond. Diamond transforms that oscillation into sound waves. The system can create oscillation conducting electricity to diamon or it can use laser rays to create extremely strong sound using nanodiamonds. The laser ray can form a so-called photoacoustic phenomenon in diamonds. The laser ray pushes carbon atoms forward it sends oscillation waves in that structure. When the oscillation starts in a diamond, its atomic structure aims soundwaves into one point. 

Nanodiamonds are the tools that make it possible to create very highly accurate and strong sound waves. Those soundwaves can holes in walls and metal structures. So they can used as acoustic drills. The nano-acoustic systems can used as new ultra-accurate sonar systems. The nano-diamond-based sonars can uncover invisible details. Nanodiamond-based acoustic crystals can used to send extremely accurate sound waves into targets.

And that thing makes them also very effective acoustic weapons. The acoustic laser (LRAD) systems can use acoustic diamonds to make coherent sound waves. In those systems, loudspeakers are replaced using acoustic diamonds. And those systems can create acoustic wormholes through the gas. That makes them effective tools for nanotechnology, and those systems can have weapon applications. 

There could be a straight carbon molecule in the nanotube, And then the oscillation in that diamond is sent to the nanotube, which uses the carbon chain to aim those acoustic waves precisely at the right point. The system creates oscillation using some other acoustic system. That transfers waves into the nano-diamond. Or the system can send laser waves into that nanodiamond. Those nano-acoustic systems can act as sonars where sound waves reflect. Or those systems can send acoustic waves through the object, where they act, as acoustic X-ray machines.

In some visions, the nanodiamonds can offer a new way to create small-size flying machines. Nanodiamonds can create stable mono sounds that can make small-size drones fly without moving parts. There could be a series of nanodiamonds on the layer. And then the system sends oscillation into each of them in turn. This kind of diamond-based system can make soundwaves that offer small-size aerial vehicles the ability to hover above the layer. 

The "patterned low-intensity, low-frequency ultrasound" systems can used to detect things from brains. Those systems have no poisonous side effects. And the nano-acoustics make them extremely accurate. High-accurate ultrasounds can search for things like blocks in blood vessels. 

They can see anomalies in blood vessels. But if their accuracy is good enough they can observe living neurons and neuro-transmitters by using ultrasound systems. That kind of system allows researchers to see interactions in living bodies with new tools and new accuracy. 


https://www.freethink.com/health/ultrasound-brain-stimulation

https://scitechdaily.com/the-brilliance-of-diamonds-transforming-the-world-of-semiconductor-technology/

https://scitechdaily.com/ultrafast-electronic-characterization-of-proteins-and-materials/

https://en.wikipedia.org/wiki/Long-range_acoustic_device

Comments

Popular posts from this blog

Plasmonic waves can make new waves in quantum technology.

"LSU researchers have made a significant discovery related to the fundamental properties and behavior of plasmonic waves, which can lead ot the development of more sensitive and robust quantum technologies. Credit: LSU" (ScitechDaily, Plasmonics Breakthrough Unleashes New Era of Quantum Technologies) Plasmonic waves in the quantum gas are the next-generation tools. The plasmonic wave is quite similar to radio waves. Or, rather say it, a combination of acoustic waves and electromagnetic waves. Quantum gas is an atom group. In those atom groups, temperature and pressure are extremely low.  The distance of atoms is long. And when an electromagnetic system can pump energy to those atoms. But the thing in quantum gas is that the atoms also make physical movements like soundwaves. It's possible. To create quantum gas using monoatomic ions like ionized noble gas. In those systems, positive (or negative) atoms push each other away.  When the box is filled with quantum gas and som

The breakthrough in solid-state qubits.

Hybrid integration of a designer nanodiamond with photonic circuits via ring resonators. Credit Steven Burrows/Sun Group (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough) ****************************************** The next part is from ScitechDaily.com "JILA breakthrough in integrating artificial atoms with photonic circuits advances quantum computing efficiency and scalability". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough) "In quantum information science, many particles can act as “bits,” from individual atoms to photons. At JILA, researchers utilize these bits as “qubits,” storing and processing quantum 1s or 0s through a unique system". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough) "While many JILA Fellows focus on qubits found in nature, such as atoms and ions, JILA Associate Fellow and University of Colorado Boulder Assistant

Metamaterials can change their properties in an electric- or electro-optical field.

"Researchers have created a novel metamaterial that can dynamically tune its shape and properties in real-time, offering unprecedented adaptability for applications in robotics and smart materials. This development bridges the gap between current materials and the adaptability seen in nature, paving the way for the future of adaptive technologies. Credit: UNIST" (ScitechDaily, Metamaterial Magic: Scientists Develop New Material That Can Dynamically Tune Its Shape and Mechanical Properties in Real-Time) Metamaterials can change their properties in an electric- or electro-optical field.  An electro-optical activator can also be an IR state, which means. The metamorphosis in the material can thermally activate.  AI is the ultimate tool for metamaterial research. Metamaterials are nanotechnical- or quantum technical tools that can change their properties, like reflection or state from solid to liquid when the electric or optical effect hits that material. The metamaterial can cru