Skip to main content

Argonne Laboratory works with nano-size cryotrons that act as superconductivity switches.


"Argonne National Laboratory’s nanocryotron amplifies weak electrical signals in particle detectors, crucial for collider experiments like those at Brookhaven. Its design allows for improved performance in high magnetic fields, marking a significant step in superconducting technology. Credit: SciTechDaily.com" (ScitechDaily, Nanocryotron “Superconductivity Switch” Supercharges Particle Detectors)


Small-size cryotrons that can switch superconductivity on and off are tools that can make the particle accelerators more effective. The problem with regular magnetic systems is that in some cases, like Muon G-2 anomalies, the particle accelerator's magnetic field can cover the magnetic effect of accelerating particles. 

Particle accelerators collect data from collisions of the particles using optical, magnetic, and magneto-chemical sensors. The newest sensors are cloud chambers. That system should analyze particles that travel in it. And the new types of cloud chambers use quantum gas. That makes them more effective than traditional cloud chambers. 

The magnetic field must have precise strength so that it can detect some changes in the particles. And their energy levels. If the magnetic field is too weak, the system cannot see details in the impacts. Too strong a magnetic field turns subatomic particles or subparticular interactions back in the magnetic mainframe. 

When atoms and ions are interacting in particle accelerators the problem is that those ions and anions are entireties. All particles interact separately but those interactions happen in a short period. Another thing is that the electrons and positrons are elementary particles, but there are also internal structures in those particles. The system must have a very accurate magnetic field. That it can get data from those internal structures. 

The ultra-small details in interactions require new tools. Those traditional sensors like bubble chambers and wire chambers had enough accuracy to analyze things like antimatter-matter interactions. Those sensors saw flashes of impact. Then the traditional sensors followed the tracks that particles left in vapor or something like that. 

The Higgs Boson changed this game. Those short-living particles told that there is at least one particle, that the systems must find so that researchers can complete their Standard model. The problem in those very short-living particles is that the flash or energy impulse from the collimation covers their existence. Those particles remain only for a short moment. And they cannot come out from the flash. 


https://scitechdaily.com/nanocryotron-superconductivity-switch-supercharges-particle-detectors/


https://en.wikipedia.org/wiki/Bubble_chamber


https://en.wikipedia.org/wiki/Cloud_chamber


https://en.wikipedia.org/wiki/Cryotron


Comments

Popular posts from this blog

Plasmonic waves can make new waves in quantum technology.

"LSU researchers have made a significant discovery related to the fundamental properties and behavior of plasmonic waves, which can lead ot the development of more sensitive and robust quantum technologies. Credit: LSU" (ScitechDaily, Plasmonics Breakthrough Unleashes New Era of Quantum Technologies) Plasmonic waves in the quantum gas are the next-generation tools. The plasmonic wave is quite similar to radio waves. Or, rather say it, a combination of acoustic waves and electromagnetic waves. Quantum gas is an atom group. In those atom groups, temperature and pressure are extremely low.  The distance of atoms is long. And when an electromagnetic system can pump energy to those atoms. But the thing in quantum gas is that the atoms also make physical movements like soundwaves. It's possible. To create quantum gas using monoatomic ions like ionized noble gas. In those systems, positive (or negative) atoms push each other away.  When the box is filled with quantum gas and som

The breakthrough in solid-state qubits.

Hybrid integration of a designer nanodiamond with photonic circuits via ring resonators. Credit Steven Burrows/Sun Group (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough) ****************************************** The next part is from ScitechDaily.com "JILA breakthrough in integrating artificial atoms with photonic circuits advances quantum computing efficiency and scalability". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough) "In quantum information science, many particles can act as “bits,” from individual atoms to photons. At JILA, researchers utilize these bits as “qubits,” storing and processing quantum 1s or 0s through a unique system". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough) "While many JILA Fellows focus on qubits found in nature, such as atoms and ions, JILA Associate Fellow and University of Colorado Boulder Assistant

Metamaterials can change their properties in an electric- or electro-optical field.

"Researchers have created a novel metamaterial that can dynamically tune its shape and properties in real-time, offering unprecedented adaptability for applications in robotics and smart materials. This development bridges the gap between current materials and the adaptability seen in nature, paving the way for the future of adaptive technologies. Credit: UNIST" (ScitechDaily, Metamaterial Magic: Scientists Develop New Material That Can Dynamically Tune Its Shape and Mechanical Properties in Real-Time) Metamaterials can change their properties in an electric- or electro-optical field.  An electro-optical activator can also be an IR state, which means. The metamorphosis in the material can thermally activate.  AI is the ultimate tool for metamaterial research. Metamaterials are nanotechnical- or quantum technical tools that can change their properties, like reflection or state from solid to liquid when the electric or optical effect hits that material. The metamaterial can cru