Skip to main content

Altermagnetism, new 2D materials, and quantum materials are the next big step in microelectronics.


"Researchers have pioneered a photon-based qubit communication model, facilitating precise control in quantum computing information transfer. Credit: SciTechDaily.com" (ScitechDaily, Quantum Computing Breakthrough: Photons That Make Quantum Bits “Fly”)

The problem with long-distance quantum transmission is how to protect information on traveling qubits. The system can pack those qubits into the electrons. The idea is that the quantum system slips photons into the electrons. 

This thing makes it possible to protect the information. In some other models system packs qubits in the plasma where that plasma field protects information in the qubit.


"This illustration shows electric current being pumped into platinum (the bottom slab), which results in the creation of an electron spin current that switches the magnetic state of the 2D ferromagnet on top. The colored spheres represent the atoms in the 2D material. Credit: Courtesy of the researchers." (ScitechDaily, MIT’s Electron Spin Magic Sparks Computing Evolution)


The new qubits can fly. 


The new type of quantum communication system that can use technology that makes qubits more effective is the system that makes photons or photonic qubits fly. Quantum systems are more secure than traditional computers because quantum computers can store information in a physical particle. The problem with quantum computers is that they are much more sensitive to outcoming radiation than regular computers. 

The thing. That made researchers make quantum computers was effect, called superposition. In particle accelerates photons sometimes double themselves. The thing is that photons cannot form from emptiness, and the reason for those doubling photons is that photon pushes some kind of electromagnetic field. There is a forming wave in that field, and we see that wave as photons. 

The quantum computer uses quantum entanglement for information transfer. The quantum computer loads information into a photon. And then it creates quantum entanglement between this photon and another photon. After that the information starts to flow from the sending photon to the lower energy, receiving photon. 


"Altermagnets, a newly discovered class of materials, show great potential for spin-based electronics due to their unique magnetic properties. (Artist’s concept.) Credit: SciTechDaily.com" (ScitechDaily, Unlocking the Secrets of Altermagnets in Spin-Based Electronics)

To make information travel from higher to lower energy photons. The system must create a perfect copy of the transmitting photon. Then the system creates quantum entanglement between those photons. The higher energy photon is larger than the lower energy photon. 

When radiation hits the larger photon, it forms an electromagnetic shadow on the other side. Then that photon's power field starts to stretch and when it touches the lower energy photon's energy field, it starts to send oscillation to that lower energy energy field. 

The problem is that long-distance quantum entanglements are hard to make. They require high energy levels. And things like electromagnetic radiation can destroy information in the quantum entanglement. Another way is to store data in the qubit or single photon and send that photon to the receiver of the message. There the system can raise this photon's energy level higher than the receiver's. Then the system can resend the information to the receiver. 


"Mid-infrared light reduces the fluctuations of octahedral rotations in SrTiO3, allowing the material to transform into a ferroelectric state by shifting the central titanium ion either up or down. Credit: Jörg Harms, MPSD" (ScitechDaily, Physicists Unlock the Secrets of Light-Induced Ferroelectricity in Quantum Materials)


Altermagnetism, new 2D materials, and quantum materials are the next big step in microelectronics. 


Altermagnetism is a fascinating tool for researchers when they make microelectronics. The altermagnetism is the magnetism that doesn't form a magnetic field around the wire. And that thing makes it possible to develop new and small-size microelectronic products. Altermagnetic systems can help to keep the microchip's temperature low because there are no crossing magnetic fields. That system is one of the most promising things in computing. 

Another thing that gives interesting results for microchip engineering is photon-controlled ferromagnetism. The idea is that light can adjust the ferromagnetic phenomenon turning position of ferromagnetic crystals. Or the system can adjust the magnetic layer's temperature. 

When attosecond lasers adjust a ferromagnetic crystal's temperature or position, that system can make very high-accurately controlled magnetic fields. If researchers combine these altermagnetic- and ferromagnetic structures, that allows the system can create a highly accurate magnetic field. 

The altermagnetic structures are the next-generation tools for spin-based electronics. The altermagnetic structures make it possible to control electromagnetic fields that interact with spinning electrons. 

The ability to control electron spin makes it possible to create new types of systems that can act between quantum and binary states. The system uses energy stress for the 2D particle structures. That thing makes it possible to control the electron's spin. Electrons are like small antennas, that transmit information to the receiver. The system can use electron pairs to create quantum or qubit lines between two electron layers. 



https://scitechdaily.com/mits-electron-spin-magic-sparks-computing-evolution/


https://scitechdaily.com/physicists-unlock-the-secrets-of-light-induced-ferroelectricity-in-quantum-materials/


https://scitechdaily.com/unlocking-the-secrets-of-altermagnets-in-spin-based-electronics/


https://en.wikipedia.org/wiki/Altermagnetism


Comments

Popular posts from this blog

Plasmonic waves can make new waves in quantum technology.

"LSU researchers have made a significant discovery related to the fundamental properties and behavior of plasmonic waves, which can lead ot the development of more sensitive and robust quantum technologies. Credit: LSU" (ScitechDaily, Plasmonics Breakthrough Unleashes New Era of Quantum Technologies) Plasmonic waves in the quantum gas are the next-generation tools. The plasmonic wave is quite similar to radio waves. Or, rather say it, a combination of acoustic waves and electromagnetic waves. Quantum gas is an atom group. In those atom groups, temperature and pressure are extremely low.  The distance of atoms is long. And when an electromagnetic system can pump energy to those atoms. But the thing in quantum gas is that the atoms also make physical movements like soundwaves. It's possible. To create quantum gas using monoatomic ions like ionized noble gas. In those systems, positive (or negative) atoms push each other away.  When the box is filled with quantum gas and som

What is the difference between TR-3A and TR-3B? And are those planes real?

What is the difference between TR-3A and TR-3B? And are those planes real? Is TR-3B (0) "Black Triangle UFO" or is it only the piece of paper?  The study project, what is used to create advanced ideas for use of the nuclear-powered aircraft. Or is it the study project or black budget aircraft, where lost 2,3 trillion dollars (1)of the stealth bomber were gone. In this text is things, that might seem very difficult to accept, and when we are thinking about things like doubling the object or making it smaller by using huge layers of energy, nothing denies to test those things. But were those tests successful, there is no data about that in public Internet, so we must say that things like doubling the human or aircraft can be tested, but the results can be unknown.  But in the source two is the tale, what seems like impossible, those men, who got Noble Prize put at first time one atom to the box, and hit it with photon one photon in the box and hit it with t

The interesting coincidence between USS Sea Shadow (1982) and CSS Virginia (1862)

Image I The interesting coincidence between  USS Sea Shadow (1982) and CSS Virginia (1862) Far away from its time is the thing, that you might notice when you see those two images. The upper one (Image I) is portraying the modern naval USS Sea Shadow (IX-529)(1) experimental Stealth ship, which was created by Lockheed-Martin, and the image below (Image II) is portraying the CSS Virginia (2), the ironclad from the Civil War Era. The thing why the hull of the CSS Virginia, what is ironclad from 1862 is that the ammunition of the cannons would not transfer their impact energy to the hull of the ship. And the reason why Sea Shadows hull has this form is that it should point the radar echo away from the hull.  The thing that I must say that CSS Virginia is far ahead its time because that structure is effective against the explosive ammunition, and the slanting armor of tanks like T-34 and Sherman have made them effective. But for some reason, the use of slanting armor has