Skip to main content

Are the complex numbers real?


"An illustration of the complex number z = x + iy on the complex plane. The real part is x, and its imaginary part is y". (https://en.wikipedia.org/wiki/Imaginary_unit)


Are the complex numbers real?


One of the least known irrational numbers is imaginary or complex numbers. Some mathematicians are said that complex numbers are only the form of imagination. The reason for that is the complex numbers are hard to position on the number straight. 

The imaginary unit means that the number has at least two positions in the number straight. So we can think that complex numbers are the numerical and virtual introduction of the superposition. 

Imaginary numbers or complex numbers are the numbers where is the imaginary unit. When the normal number is z, the form of the complex number is z=x+yi. And the Yi is the imaginary unit. The number of imaginary units is unlimited. 

And that means that the complex numbers have two or more places in the number straight. That means the imaginary or complex numbers are the mathematical version of the superposition. So are imaginary numbers real numbers or not? The fact is that in regular calculations, we don't need those numbers.

The form of the imaginary is introduced in the forms z=x+yi or a+bi. And they are both right. The thing is that complex or imaginary numbers are irrational or virtual numerical introductions or models. And those models can use for calculating the superpositions. 

So in the physical world, the imaginary numbers are not real. Or am I somehow wrong? Even if regular people don't need complex numbers anything they can use in quantum physics for calculating the superpositions. Imaginary or complex numbers can use for calculating the positions of the qubits in quantum computers. The superposition of the qubit can calculate "very easily" by using complex numbers. 

Complex numbers are the thing that are and are not at the same time. They are important things in a very small sector of mathematics or technology. But in regular calculations and things like engineering, there is no need for those numbers. Except in one place. The superposition of the qubit is easy to calculate by using those numbers. 

In that calculation, "x" is the line of the qubit. And Yi is the number of layers of the qubit that the uses. When we are thinking about programming quantum computers. 

Complex numbers might play a primary role in complicated calculations. Those are needed for making the quantum computer operational. This thing is one example of how the area of mathematics might be otherwise useless. Can use effectively in one precise point. And that point is the most fundamental and powerful calculator in the world. 


https://en.wikipedia.org/wiki/Complex_number


https://en.wikipedia.org/wiki/Irrational_number


https://thoughtandmachines.blogspot.com/

Comments

Popular posts from this blog

Plasmonic waves can make new waves in quantum technology.

"LSU researchers have made a significant discovery related to the fundamental properties and behavior of plasmonic waves, which can lead ot the development of more sensitive and robust quantum technologies. Credit: LSU" (ScitechDaily, Plasmonics Breakthrough Unleashes New Era of Quantum Technologies) Plasmonic waves in the quantum gas are the next-generation tools. The plasmonic wave is quite similar to radio waves. Or, rather say it, a combination of acoustic waves and electromagnetic waves. Quantum gas is an atom group. In those atom groups, temperature and pressure are extremely low.  The distance of atoms is long. And when an electromagnetic system can pump energy to those atoms. But the thing in quantum gas is that the atoms also make physical movements like soundwaves. It's possible. To create quantum gas using monoatomic ions like ionized noble gas. In those systems, positive (or negative) atoms push each other away.  When the box is filled with quantum gas and som

The breakthrough in solid-state qubits.

Hybrid integration of a designer nanodiamond with photonic circuits via ring resonators. Credit Steven Burrows/Sun Group (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough) ****************************************** The next part is from ScitechDaily.com "JILA breakthrough in integrating artificial atoms with photonic circuits advances quantum computing efficiency and scalability". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough) "In quantum information science, many particles can act as “bits,” from individual atoms to photons. At JILA, researchers utilize these bits as “qubits,” storing and processing quantum 1s or 0s through a unique system". (ScitechDaily, Solid-State Qubits: Artificial Atoms Unlock Quantum Computing Breakthrough) "While many JILA Fellows focus on qubits found in nature, such as atoms and ions, JILA Associate Fellow and University of Colorado Boulder Assistant

Metamaterials can change their properties in an electric- or electro-optical field.

"Researchers have created a novel metamaterial that can dynamically tune its shape and properties in real-time, offering unprecedented adaptability for applications in robotics and smart materials. This development bridges the gap between current materials and the adaptability seen in nature, paving the way for the future of adaptive technologies. Credit: UNIST" (ScitechDaily, Metamaterial Magic: Scientists Develop New Material That Can Dynamically Tune Its Shape and Mechanical Properties in Real-Time) Metamaterials can change their properties in an electric- or electro-optical field.  An electro-optical activator can also be an IR state, which means. The metamorphosis in the material can thermally activate.  AI is the ultimate tool for metamaterial research. Metamaterials are nanotechnical- or quantum technical tools that can change their properties, like reflection or state from solid to liquid when the electric or optical effect hits that material. The metamaterial can cru