"Artistic representation of metasurface quantum graphs. Credit: Joshua Mornhinweg" (ScitechDaily, Harvard Just Collapsed a Quantum Computer Onto a Chip)
Harvard scientists built a quantum computer on a chip. And that drives advances to the room- or table-sized quantum computers and quantum networks. This kind of system can also make the quantum internet, at least in the short range, possible. But long-distance wireless quantum communication requires new tools like photonics. Some researchers say that the future is in photonic microchips. That means the light acts as a data transporter. Those systems will use less energy than electric microchips. But that thing requires new systems like optical gates. Today, researchers can make photonic microchips, but those systems are large-scale, and their mirrors and light cutters require AI-based systems that can control those light-based components.
The main problem is how to make effective photonic versions of the electric components. And especially the photonic gates and switches are hard to make. The reason for that is that leaders will heat the physical iris. And controlling that system is not as effective as it should be. Data travels differently in those microchips. Theoretically, the system can use two frequencies or colors. The green can be one, and red can be zero. The system inputs serial numbers to those photonic bits so that the system can sort them into the right order. But the control system is very complicated.
"Light can scatter off light, revealing ghostly particles and clues to cracking the universe’s fundamental laws. Credit: SciTechDaily.com" (ScitechDaily, Light Versus Light: The Secret Physics Battle That Could Rewrite the Rules)
Photonic interactions can solve many problems in quantum networks. If we think of a system that shoots a thin light wave or light quantum through the photon, that system can make the new quantum internet possible. The system downloads data to the particle from the photon, and then that data travels to that wave. For working perfectly, that system requires very accurate ways to control photons and their interactions. The photonic systems that are in the photonic interactions, where light scatters light to make possible things like optical gates. The photonic gate means a system where another lightwave or photon cuts the route of the lightwave. The system can also adjust the energy level of the light wave or adjust the lightwave’s wavelength.
The photonic system that scatters light allows the cone that protects microchips and sensitive components against outgoing radiation. That system makes lightwaves travel past the layer. It would deny electromagnetic waves from reaching the shell of the system. The photonic interaction or scattering effect can make it possible to create new types of stealth systems. The idea is that the light or photons form a needle that scatters lightwaves past the object. If that scattered light can aim electromagnetic radiation to reach and reflect from the surface or aims reflection out from the observer, that thing makes the object itself invisible. There can be standing waves at the crossing point of the scattered waves. So the observer would see the lights in those points.
https://scitechdaily.com/harvard-just-collapsed-a-quantum-computer-onto-a-chip/
https://scitechdaily.com/light-versus-light-the-secret-physics-battle-that-could-rewrite-the-rules/